This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.
This study was part of the framework that contributed not only to the improvement of thermal comfort in housing but also to the decarbonization of the construction and building materials industry. For this purpose, terracotta brick seems to meet these needs. Thus, the objective of this work was to evaluate the influence of the incorporation of coal fly ash from a thermal power plant on the physical and mechanical properties of fired bricks from grey clay in the Thicky area of Senegal. The coal fly ash was incorporated into the raw clay material in proportions of 0, 5, 10, and 15 % by weight. These two raw materials were first characterized by X-ray fluorescence spectroscopy (XRF). The XRF analyses showed that the most abundant oxides in clay were SiO2 (55.034%) and Fe2O3 (10.155%). In coal fly ash, SiO2 (38.574%) is predominant. The ash also contained Al2O3 (7.717%) and alicano-earthy melting oxides such as CaO (9.271%) and MgO (7.298%) etc. These melting oxides were necessary to facilitate the formation of the liquid phase when baking platelets. The latter, when burned at a temperature of 880°C, were characterized by determining the number of physico-mechanical parameters, such as linear shrinkage during cooking, water absorption, fire loss and compressive strength. A Hierarchical Ascending Classification of these different parameters was performed and three classes were obtained. Class 1 with better compressive strength (6.358 MPa), was in sample A (5%). Class 2 consisted of sample D (reference) and had a higher plasticity index (28.51%) and water absorption rate (11.19%). Finally, class 3, which included samples B (10%) and C (15%), had very high shrinkage and fire losses compared to other platelets. These results highlighted the possibility of using up to 5% of the coal fly ash in the production of new fired bricks with good performance.
El Hadji Moussa DiopAlpha Ousmane ToureKalidou BaMamadou FayeFalilou Mbacke Sambe
The aim of this study is to enhance the value of local earth materials used in the construction of certain homes in the Republic of Guinea. Thus, a trial study to improve the quality of mud bricks using paper fibers obtained by grinding and soaking in water and then drying were used as a stabilizer in the manufacture of these mud bricks from the sample of two sites Dounkiwal (DK) (in Mamou and the sample from the urban commune of Kouroussa). To do this, certain methods and means of identification were carried out, namely: geotechnical, mineralogical and chemical analyses. Sample DK from Mamou has a silty-clay geotechnical characteristic with a plasticity index Ip of 12.75%. However, mineralogical and chemical studies showed that sample Dounkiwal (DK) (Mamou) contains a high proportion of silica and iron oxides (79.63%) and Fe2O3 (11.85%), associated with other alkaline earth oxides and ions: CaO;MgO;SO32−;Cl−, i.e. 3.96%;0.96%;0.28% and 0.039% respectively. Its loss on ignition (LOI) and insoluble residues are 15.40% and 56.36%. The evaluation of the number of huts in Upper and Middle Guinea showed that the populations of these areas have been using mud bricks for several decades in the construction of dwellings. The average value found for the compressive strength of these bricks (from samples I, II and III from Kouroussa) is 0.16 MPa. This value is appreciable in the construction of mud houses.