The need for higher data rate and higher systems capacity leads to several solutions including higher constellation size, spatial multiplexing, adaptive modulation and Non-Orthogonal Multiple Access (NOMA). Adaptive Modulation makes use of the user’s location from his base station, such that, closer users get bigger constellation size and hence higher data rate. A similar idea of adaptive modulation that makes use of the user’s locations is the NOMA technique. Here the base station transmits composite signals each for a different user at a different distance from the base station. The transmitted signal is formed by summing different user’s constellations with different weights. The closer the users the less average power constellation is used. This will allow the closer user to the base station to distinguish his constellation and others constellation. The far user will only distinguish his constellation and other user’s data will appear as a small interference added to his signal. In this paper, it is shown that the Adaptive modulation and the NOMA are special cases of the more general Cluster Modulation technique. Therefore, a general frame can be set to design both modulation schemes and better understanding is achieved. This leads to designing a multi-level NOMA and/or flexible adaptive modulation with combined channel coding.
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
Cassiano Antonio BortolozoLuana Albertani PampuchMarcio Roberto Magalhães De AndradeDaniel MetodievAdenilson Roberto CarvalhoTatiana Sussel Gonçalves MendesTristan PryerHarideva Marturano EgasRodolfo Moreda MendesIsadora Araújo SousaJenny Power
Based on the analysis of the importance of professional cluster construction by ecological theory,with the change of social demand for talents,this paper explores the practice of environmental chemical professional cluster construction in Pingdingshan University,including gradually perfecting teaching conditions and reforming teaching mode,breaking through the limitations of resources,integrating the boundaries of colleges and departments,integrating multiple resources,innovating systems and mechanisms,reconstructing professional clusters,decon-structing professional connotations,reorganizing curriculum systems,etc.,in order to better build the ecological chain network of education in application-oriented colleges and universities,realize the deep integration of industry and education,train future-oriented interdisciplinary applied talents of new engineering,and realize the construction of characteristic professional cluster in application-oriented colleges.
Using a microscopic four-body cluster model,we investigate the spectral properties and structural configurations of the ^(10)Be nucleus.We calculate physical quantities such as the root-mean-squared(r.m.s.)radii and electromagnetic transition strengths.The theoretical results for the energies and certain electromagnetic transition strengths of the low-lying states show good agreement with experimental data.In particular,the enhancement of the r.m.s.radius and isoscalar monopole transition strength of the O_(3)^(+) state indicates a well-developed cluster structure.We obtained three 1-states in E_(x)<15 MeV that show remarkable dipole transition strengths,suggesting that the 1-states may have cluster structure.Using the obtained wave functions,we calculate the reduced-width amplitudes(RWAs)to investigate the SHe+α and'Be+n two-body cluster structures in ^(10)Be.The results suggest that the lowlying states show the two-body ^(6)He+α and ^(9)Be+n configuration,with the ^(6)He+α components of the two-body structure diminishing as the energy increases,which due to the breakup of He and ^(9)Be at higher excitation energies.Moreover,a few states above the α+α+n+n threshold still exhibit significant 9Be+n components.
This paper introduces the principle of PPS-based adaptive cluster sampling method and its modified HH estimator and HT estimator calculation method. It compares PPS-based adaptive cluster sampling method with SRS sampling and SRS-based adaptive group. The difference between the group sampling and the advantages and scope of the PPS adaptive cluster sampling method are analyzed. According to the case analysis, the relevant conclusions are drawn: 1) The adaptive cluster sampling method is more accurate than the SRS sampling;2) SRS adaptive The HT estimator of the cluster sampling is more stable than the HH estimator;3) The two estimators of the PPS adaptive cluster sampling method have little difference in the estimation of the population mean, but the HT estimator variance is smaller and more suitable;4) PPS The HH estimator of adaptive cluster sampling is the same as the HH estimator of SRS adaptive cluster sampling, but the variance is larger and unstable.
Cluster radioactivity is studied within the generalized liquid drop model(GLDM),in which the shell correction energy,pairing energy,and cluster preformation factor are considered.The calculations show significant improvements and can reproduce the experimental data within a factor of 8.04 after considering these physical effects.In addition,the systematic trend of the cluster preformation factors is discussed in terms of the N_(p)N_(n)scheme to study the influence of the valence proton-neutron interaction and shell effect on cluster radioactivity.It is found that log10Pcis linearly related to N_(p)N_(n).This is in agreement with a recent study[L.Qi et al.,Phys.Rev.C 108,014325(2023)],in which log10Pc,obtained using different theoretical models and treatment methods than those used in this study,also had a linear relationship with N_(p)N_(n).Combined with the work by Qi et al.,this study suggests that the linear relationship between log10Pcand N_(p)N_(n)is model-independent and both the shell effect and valence proton-neutron interaction play essential roles in cluster radioactivity.An analytical formula is proposed to calculate the cluster preformation factor based on the N_(p)N_(n)scheme.In addition,the cluster preformation factors and the cluster radioactivity half-lives of some heavy nuclei are predicted,which can provide a reference for future experiments.