The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm.
Cheng ZhouZexiang LyuMaoting ZhangXin ZouLiang WeiFeng WangMingxin QinJia XuJian Sun
Currently,most existing inductive relation prediction approaches are based on subgraph structures,with subgraph features extracted using graph neural networks to predict relations.However,subgraphs may contain disconnected regions,which usually represent different semantic ranges.Because not all semantic information about the regions is helpful in relation prediction,we propose a relation prediction model based on a disentangled subgraph structure and implement a feature updating approach based on relevant semantic aggregation.To indirectly achieve the disentangled subgraph structure from a semantic perspective,the mapping of entity features into different semantic spaces and the aggregation of related semantics on each semantic space are updated.The disentangled model can focus on features having higher semantic relevance in the prediction,thus addressing a problem with existing approaches,which ignore the semantic differences in different subgraph structures.Furthermore,using a gated recurrent neural network,this model enhances the features of entities by sorting them by distance and extracting the path information in the subgraphs.Experimentally,it is shown that when there are numerous disconnected regions in the subgraph,our model outperforms existing mainstream models in terms of both Area Under the Curve-Precision-Recall(AUC-PR)and Hits@10.Experiments prove that semantic differences in the knowledge graph can be effectively distinguished and verify the effectiveness of this method.