Intent detection and slot filling are two important components of natural language understanding.Because their relevance,joint training is often performed to improve performance.Existing studies mostly use a joint model of multi-intent detection and slot-filling with unidirectional interaction,which improves the overall performance of the model by fusing the intent information in the slot-filling part.On this basis,in order to further improve the overall performance of the model by exploiting the correlation between the two,this paper proposes a joint multi-intent detection and slot-filling model based on a bidirectional interaction structure,which fuses the intent encoding information in the encoding part of slot filling and fuses the slot decoding information in the decoding part of intent detection.Experimental results on two public multi-intent joint training datasets,MixATIS and MixSNIPS,show that the bidirectional interaction structure proposed in this paper can effectively improve the performance of the joint model.In addition,in order to verify the generalization of the bidirectional interaction structure between intent and slot,a joint model for single-intent scenarios is proposed on the basis of the model in this paper.This model also achieves excellent performance on two public single-intent joint training datasets,CAIS and SNIPS.
WANG ChangjingZENG XianghuiWANG YuxinSUN YuxinZUO Zhengkang
Air target intent recognition holds significant importance in aiding commanders to assess battlefield situations and secure a competitive edge in decision-making.Progress in this domain has been hindered by challenges posed by imbalanced battlefield data and the limited robustness of traditional recognition models.Inspired by the success of diffusion models in addressing visual domain sample imbalances,this paper introduces a new approach that utilizes the Markov Transfer Field(MTF)method for time series data visualization.This visualization,when combined with the Denoising Diffusion Probabilistic Model(DDPM),effectively enhances sample data and mitigates noise within the original dataset.Additionally,a transformer-based model tailored for time series visualization and air target intent recognition is developed.Comprehensive experimental results,encompassing comparative,ablation,and denoising validations,reveal that the proposed method achieves a notable 98.86%accuracy in air target intent recognition while demonstrating exceptional robustness and generalization capabilities.This approach represents a promising avenue for advancing air target intent recognition.
In task-oriented dialogue systems, intent, emotion, and actions are crucial elements of user activity. Analyzing the relationships among these elements to control and manage task-oriented dialogue systems is a challenging task. However, previous work has primarily focused on the independent recognition of user intent and emotion, making it difficult to simultaneously track both aspects in the dialogue tracking module and to effectively utilize user emotions in subsequent dialogue strategies. We propose a Multi-Head Encoder Shared Model (MESM) that dynamically integrates features from emotion and intent encoders through a feature fusioner. Addressing the scarcity of datasets containing both emotion and intent labels, we designed a multi-dataset learning approach enabling the model to generate dialogue summaries encompassing both user intent and emotion. Experiments conducted on the MultiWoZ and MELD datasets demonstrate that our model effectively captures user intent and emotion, achieving extremely competitive results in dialogue state tracking tasks.