To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-decomposition associated with kernel-based-extreme-learningmachine optimized by the whale optimization algorithm(VMD-WOA-KELM)is proposed in this paper.Firstly,the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics.The key impact factors of each IMF component are selected according to Copula model,and the corresponding WOA-KELM is established to conduct point prediction.Subsequently,the parametric method(PM)and non-parametric method(NPM)are used to estimate the prediction error probability density distribution(PDF)of each component,whose prediction interval(PI)under the 95%confidence level is also obtained.By means of the differential evolution algorithm(DE),a weighted combination model based on the PIs is built to construct the combination-interval(CI).Finally,the CIs of each component are added to generate the total PI.A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance.