采用固溶烧结法制备了Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金,利用X射线衍射仪和压力-组成-温度测试仪等研究了Co含量对合金相结构和储氢性能的影响.结果表明,合金由Mg_2Ni型Mg_2(Ni,Co)主相及少量Mg和Mg Ni3Co新相组成.Mg2(Ni,Co)具有良好的可逆储氢性能,吸氢形成Mg_2Ni_(0.9)Co_(0.1)H_4型四元氢化物,其具有与父系氢化物HT-Mg_2NiH_4相近的放氢焓变(ΔHd=63.9 k J/mol H2).Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金具有良好的放氢动力学性能,二维相界面迁移为放氢过程的控制步骤.随着Co含量的增加,合金的放氢活化能(Ea)降低,其中,Mg_2Ni_(0.8)Co_(0.2)的Ea降低到54.0 k J/mol.
The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.