Gastric cancer(GC)and gastroesophageal junction cancer(GEJC)represent a significant burden globally,with complications such as overt bleeding(OB)further exacerbating patient outcomes.A recent study by Yao et al evaluated the effectiveness and safety of systematic treatment in GC/GEJC patients presenting with OB.Using propensity score matching,the study balanced the comparison groups to investigate overall survival and treatment-related adverse events.The study's findings emphasize that systematic therapy can be safe and effective and contribute to the ongoing debate about the management of advanced GC/GEJC with OB,highlighting the complexities of treatment decisions in these high-risk patients.
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions.
时序抽象作为分层强化学习的重要研究内容,允许分层强化学习智能体在不同的时间尺度上学习策略,可以有效解决深度强化学习难以处理的稀疏奖励问题。如何端到端地学习到优秀的时序抽象策略一直是分层强化学习研究面临的挑战。Option-Critic(OC)框架在Option框架的基础上,通过策略梯度理论,可以有效解决此问题。然而,在策略学习过程中,OC框架会出现Option内部策略动作分布变得十分相似的退化问题。该退化问题影响了OC框架的实验性能,导致Option的可解释性变差。为了解决上述问题,引入互信息知识作为内部奖励,并提出基于互信息优化的Option-Critic算法(Option-Critic Algorithm with Mutual Information Optimization,MIOOC)。MIOOC算法结合了近端策略Option-Critic(Proximal Policy Option-Critic,PPOC)算法,可以保证下层策略的多样性。为了验证算法的有效性,把MIOOC算法和几种常见的强化学习方法在连续实验环境中进行对比实验。实验结果表明,MIOOC算法可以加快模型学习速度,实验性能更优,Option内部策略更有区分度。