This manuscript presents a dataset detailing a method for purifying monomers. Purification plays a crucial role in every chemical process, as it leads to an improvement in product quality through the removal of impurities. The primary method for monomer purification, like acrylonitrile (AN), is the distillation technique. However, this technique is unsafe and hard to set up or handle. A straightforward, risk-free, low-cost method like the column technique resolves these issues. A simple column technique demonstrated the successful execution of purifying AN. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analyses confirmed that AN was successfully purified, with purity reaching 99.8%. FTIR spectra revealed changes in the position and intensity of the stretching vibration peaks after purification. Also, the functional groups of the inhibitor monomethyl ether of hydroquinone (MeHQ) were undetected after purification. Furthermore, after purification, NMR spectra revealed the absence of aromatic protons and carbons associated with MeHQ. In conclusion, the column technique is a successful and inexpensive way to purify AN monomers. This makes it useful for a wide range of applications, especially in polymerization reactions where MeHQ needs to be removed to prevent self-polymerization during the initiation process.
Tetracycline and analogues are among the most used antibiotics in the dairy industry. Besides the therapeutic uses, tetracyclines are often incorporated into livestock feed as growth promoters. A considerable amount of antibiotics is released unaltered through milk from dairy animals. The presence of antibiotic residues in milk and their subsequent consumption can lead to potential health impacts, including cancer, hypersensitivity reactions, and the development of antibiotic resistance. Thus, it is important to monitor residual levels of tetracyclines in milk. The purpose of this study is to develop a quick and simple method for simultaneously extracting five tetracycline analogues from bovine milk. Specifically, five tetracycline analogues: Chlortetracycline (CTC), demeclocycline (DEM), doxycycline (DC), minocycline (MC), and tetracycline (TC) were simultaneously extracted from milk using trifluoroacetic acid. Subsequently, the extracted analogues were separated by reverse-phase high-performance liquid chromatography (RP-HPLC) and detected at 355 nm using UV/Vis. Calibration curves for all five tetracycline analogues show excellent linearity (r2 value > 0.99). Percent recovery for MC, TC, DEM, CTC, and DC were: 31.88%, 96.91%, 151.29, 99.20%, and 85.58% respectively. The developed extraction method has good precision (RSD < 9.9% for 4 of the 5 analogues). The developed method with minimal sample preparation and pretreatment has the potential to serve as an initial screening test.
Oscar CordovaThien LeChristopher LambertDevin BrodieStephany RamirezFrancis SandovalKarno Ng
How stories from ordinary people hold extraordinary social value.During a two-week trip to my native Xinjiang Uygur Autonomous Region in northwest China,I contemplated the following question:Born and raised in the region until the age of 18,how can I tell the stories that unfold here to people on the outside?The stories of ordinary locals are very simple,to the point that many people feel they hold no real“news value.”But for those who have lived through Xinjiang’s difficult times,the present is hard-won.
On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.
A simple semi-analytical collective model that takes into account the limitations of the variation interval of the collective variable is suggested to describe the chiral dynamics in triaxial odd−odd nuclei with a fixed particle−hole configuration.The collective Hamiltonian is constructed with the potential energy obtained using the postulated ansatz for the wave function symmetric with respect to chiral transformation.By diagonalizing the collective Hamiltonian the wave functions of the lowest states are obtained and the evolution of the energy splitting of the chiral doublets in transition from chiral vibration to chiral rotation regime is demonstrated.