Tunneling-based static random-access memory(SRAM)devices have been developed to fulfill the demands of high density and low power,and the performance of SRAMs has also been greatly promoted.However,for a long time,there has not been a silicon based tunneling device with both high peak valley current ratio(PVCR)and practicality,which remains a gap to be filled.Based on the existing work,the current manuscript proposed the concept of a new silicon-based tunneling device,i.e.,the silicon crosscoupled gated tunneling diode(Si XTD),which is quite simple in structure and almost completely compatible with mainstream technology.With technology computer aided design(TCAD)simulations,it has been validated that this type of device not only exhibits significant negative-differential-resistance(NDR)behavior with PVCRs up to 10^(6),but also possesses reasonable process margins.Moreover,SPICE simulation showed the great potential of such devices to achieve ultralow-power tunneling-based SRAMs with standby power down to 10^(−12)W.
The tunneling of the massless Dirac fermions through a vector potential barrier are theoretically investigated, wherethe vector potential can be introduced by very high and very thin (d-function) magnetic potential barriers. We showthat, distinct from the previously studied electric barrier tunneling, the vector potential barriers are more transparent forpseudospin-1/2 Dirac fermions but more obstructive for pseudospin-1 Dirac fermions. By tuning the height of the vectorpotential barrier, the pseudospin-1/2 Dirac fermions remain transmitted, whereas the transmission of the pseudospin-1Dirac fermions is forbidden, leading to a pseudospin filtering effect for massless Dirac fermions.