王小六
作品数: 3被引量:0H指数:0
  • 所属机构:东南大学数学系
  • 所在地区:江苏省 南京市
  • 研究方向:理学
  • 发文基金:国家自然科学基金

相关作者

潮小李
作品数:14被引量:3H指数:1
供职机构:东南大学数学系
研究主题:子流形 RADON测度 PINCHING定理 渐近行为 球面
The Stability of m-fold Circles in the Curve Shortening Problem
The curve shortening flow is a classical topic in geometry analysis.We studied the stability of m-fold circles...
王小六
一类带有吸收项的抛物型方程组的整体解与有限时刻爆破
物理、化学、生物和技术工程中的许多现象都可以模型化为带有非线性反应项、扩散项、吸收项和边界流的抛物型方程和方程组.近十年来,人们特别关注这些问题的解的整体存在性和有限时刻爆破性质,见文献[1,2,6,7,8,9,13,2...
王小六
关键词:抛物型方程组整体存在性非线性边界流
文献传递
Constant angle surfaces constructed on curves
2013年
The Frenet-Serret formula is used to characterize the constant angle ruled surfaces in R3. When the surfaces are the tangent developmental and normal surfaces, that is, r(s, v) = tr(s) +v(cosα(s) . t(s) +sina(s) . n(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a certain special surface. When the surfaces are normal and binormal surfaces, that is, r ( s, v ) = σ ( s ) + v ( cosa ( s ) . n(s) + since(s) . b(s)), it is shown that each of these surfaces is locally isometric to a piece of a plane or a cylindrical surface.
王小六潮小李