In this paper, Xinjiang's coal field is selected as the investigation area. Through a series of field surveys in Xinjiang, we made the small-scale area analysis of coal field fire using the ground remote sensing technique, and presented the reasonable evaluation of thermal anomaly conditions of Xinjiang's coal field arising from coal self-ignition fires. The results show that the method of small-scale area analysis is available for examining the extinguished actuality of coal fires and detecting fire spots. Therefore, for the selected fire-extlngulshed coal field in Xinjiang, the fire extinguishing effect was effectively analyzed by the means, and the new hidden thermal dangers were sought and diagnosed. For the coal field where the fire has not been extinguished, the utilization of this means approximately identified the severity and range of the fire area, and provided the quantitative and ground references for extinguish engineering.
In the applications of primary spectrum pyrometry,based on the dynamic range and the minimum sensibility of the sensor,the application issues,such as the measurement range and the measurement partition,were investigated through theoretical analyses. For a developed primary spectrum pyrometer,the theoretical predictions of measurement range and the distributions of measurement partition were presented through numerical simulations. And the measurement experiments of high-temperature blackbody and standard temperature lamp were processed to further verify the above theoretical analyses and numerical results. Therefore the research in the paper provides the helpful supports for the applications of primary spectrum pyrometer and other radiation pyrometers.