Researches on the boundary shape of fluid flow in porous media play an important role in engineering practices, such as petroleum exploitation, nuclear waste disposal and groundwater contamination. In this paper, six types of artificial porous samples (emery jade) with different porosities are manufactured. With the background of slow flow in porous media, laboratory experiments are carried out by observing the movement of five types of fluids with different dynamic viscosities in various types of porous media. A digital video recorder is employed to record the complete process of the fluid flow in the porous media. Based on the digital photos of the moving boundaries of fluid flow in porous media, the average displacement and fractal dimension of the moving boundary are estimated for different combinations of porosity and dynamic viscosity. Moreover, the evolution behavior of the average velocity and fractal dimension of the moving boundary with time is known. The statistical relations of the average velocity, the fractal dimension of the moving boundary and the porosity of porous media and the dynamic vis- cosity of fluids are proposed in this paper. It is shown that the front shape of the moving boundary of fluid flow in porous media is an integrated result of the porosity of porous media and the dynamic viscosity of fluids.
Scanning electronic microscopy (SEM) was employed to investigate fractographs of sandstone in mine roof strata under thermal-mechanical coupled effect. Based on the evolution of sandstone surface morphology in the failure process and frac- tography, the fracture mechanism was studied and classified under meso and mi- cro scales, respectively. The differences between fractographs under different tem- peratures were examined in detail. Under high temperature, fatigue fracture and plastic deformation occurred in the fracture surface. Therefore, the temperature was manifested by these phenomena to influence strongly on micro failure mechanism of sandstone. In addition, the failure mechanism would transit from brittle failure mechanism at low temperature to coupled brittle-ductile failure mechanism at high temperature. The variation of sandstone strength under differ- ent temperature can be attributed to the occurrence of plastic deformation, fatigue fracture, and microcracking. The fatigue striations in the fracture surfaces under high temperature may be interpreted as micro fold. And the coupled effect of tem- perature and tensile stress may be another formation mechanism of micro fold in geology.
ZUO JianPing1,2, XIE HePing2,3, ZHOU HongWei1,2 PENG SuPing1 1 State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China