Phosphorus (P) deficiency is a major limitation for plant growth and development. Among the wide set of responses to cope with low soil P, plants increase their level of intracellular and secreted acid phosphatases (APases), which helps to catalyze inorganic phosphate (Pi) hydrolysis from organophosphates, in this study we characterized the rice (Oryza sativa) purple acid phosphatase 10a (OsPAPIOa). OsPAPIOa belongs to group la of purple acid phosphatases (PAPs), and clusters with the principal secreted PAPs in a variety of plant species including Arabidopsis. The transcript abundance of OsPAPIOa is specifically induced by Pi deficiency and is controlled by OsPHR2, the central transcription factor controlling Pi homeostasis. In gel activity assays of root and shoot protein extracts, it was revealed that OsPAPIOa is a major acid phosphatase isoform induced by Pi starvation. Constitutive overexpression of OsPAPIOa results in a significant increase of phosphatase activity in both shoot and root protein extracts. In vivo root 5-bromo.4-chloro-3-indolyl-phosphate (BCIP) assays and activity measurements on external media showed that OsPAPIOa is a root-associated APase. Furthermore, overexpression of OsPAPIOa significantly improved ATP hydrolysis and utilization compared with wild type plants. These results indicate that OsPAPIOa can potentially be used for crop breeding to improve the efficiency of P use.
The Agrobacterium-mediated transformation system is the most commonly used method in soybean transformation.Screening of soybean genotypes favorable for Agrobacterium-infection and tissue regeneration is the most important step to establish an efficient genetic transformation system.In this study,twenty soybean genotypes that originated from different soybean production regions in China were screened for transient infection,regeneration capacity,and stable transgenic efficiency.Three genotypes,Yuechun 04-5,Yuechun 03-3,and Tianlong 1,showed comparable stable transgenic efficiencies with that of the previously reported American genotypes Williams 82 and Jack in our experimental system.For the Tianlong 1,the average stable transformation efficiency is 4.59%,higher than that of control genotypes(Jack and Williams 82),which is enough for further genomic research and genetic engineering.While polymerase chain reaction(PCR),LibertyLink strips,and β-glucuronidase(GUS) staining assays were used to detect the insertion and expression of the transgene,leaves painted with 135 mg/L Basta could efficiently identify the transformants.