您的位置: 专家智库 > >

国家自然科学基金(41201089)

作品数:4 被引量:119H指数:4
相关作者:夏天吴文斌周清波周勇王思更多>>
相关机构:中国农业科学院农业资源与农业区划研究所华中师范大学四川省农业科学院更多>>
发文基金:国家自然科学基金国家高技术研究发展计划国家重点基础研究发展计划更多>>
相关领域:农业科学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇农业科学

主题

  • 2篇LAI
  • 1篇冬小麦
  • 1篇遥感
  • 1篇叶面
  • 1篇叶面积
  • 1篇叶面积指数
  • 1篇小麦
  • 1篇反演
  • 1篇反演方法
  • 1篇高光谱遥感
  • 1篇NORTHE...
  • 1篇RELATI...
  • 1篇RETRIE...
  • 1篇USING
  • 1篇CHANGE...
  • 1篇CLIMAT...
  • 1篇ESTIMA...
  • 1篇HYPER
  • 1篇MODEL-...
  • 1篇SPATIO...

机构

  • 1篇华中师范大学
  • 1篇中国农业科学...

作者

  • 1篇周勇
  • 1篇周清波
  • 1篇吴文斌
  • 1篇夏天

传媒

  • 2篇Journa...
  • 1篇农业工程学报

年份

  • 1篇2016
  • 1篇2014
  • 1篇2013
4 条 记 录,以下是 1-3
排序方式:
Spatio-Temporal Changes in the Rice Planting Area and Their Relationship to Climate Change in Northeast China: A Model-Based Analysis被引量:14
2014年
Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.
XIA TianWU Wen-binZHOU Qing-boYU Qiang-yiPeter H VerburgYANG PengLU Zhong-junTANG Hua-jun
Estimating the crop leaf area index using hyperspectral remote sensing被引量:18
2016年
The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.During the last two decades,hyperspectral remote sensing has been employed increasingly for crop LAI estimation,which requires unique technical procedures compared with conventional multispectral data,such as denoising and dimension reduction.Thus,we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques.First,we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation.Second,we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types:approaches based on statistical models,physical models(i.e.,canopy reflectance models),and hybrid inversions.We summarize and evaluate the theoretical basis and different methods employed by these approaches(e.g.,the characteristic parameters of LAI,regression methods for constructing statistical predictive models,commonly applied physical models,and inversion strategies for physical models).Thus,numerous models and inversion strategies are organized in a clear conceptual framework.Moreover,we highlight the technical difficulties that may hinder crop LAI estimation,such as the "curse of dimensionality" and the ill-posed problem.Finally,we discuss the prospects for future research based on the previous studies described in this review.
LIU KeZHOU Qing-boWU Wen-binXIA TianTANG Hua-jun
冬小麦叶面积指数高光谱遥感反演方法对比被引量:86
2013年
冬小麦叶面积指数(LAI,leafarea index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。
夏天吴文斌周清波周勇
关键词:遥感LAI冬小麦反演方法
共1页<1>
聚类工具0