Weighted interior penalty discontinuous Galerkin method is developed to solve the two-dimensional non-equilibrium radiation diffusion equation on unstructured mesh.There are three weights including the arithmetic,the harmonic,and the geometric weight in the weighted discontinuous Galerkin scheme.For the time discretization,we treat the nonlinear diffusion coefficients explicitly,and apply the semiimplicit integration factormethod to the nonlinear ordinary differential equations arising from discontinuous Galerkin spatial discretization.The semi-implicit integration factor method can not only avoid severe timestep limits,but also takes advantage of the local property of DG methods by which small sized nonlinear algebraic systems are solved element by element with the exact Newton iteration method.Numerical results are presented to demonstrate the validity of discontinuous Galerkin method for high nonlinear and tightly coupled radiation diffusion equation.
Rongpei ZhangXijun YuJiang ZhuAbimael F.D.LoulaXia Cui
We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems.