A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, ..., |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic. In this paper, we show that if G1 is an n-vertex graph with minimum degree at least r, and G2 is an m-vertex graph with maximum degree at most 2r - 1 (m ≥ n), then G1 V G2 is antimagic.
The list extremal number f(G) is defined for a graph G as the smallest integer k such that the join of G with a stable set of size k is not |V(G)|-choosable. In this paper, we find the exact value of f(G), where G is the union of edge-disjoint cycles of length three, four, five and six. Our results confirm two conjectures posed by S. Gravier, F. Maffray and B. Mohar.
A labeling of a graph G is a bijection from E(G) to the set {1,2,…,|E (G)| }.A labeling is antimagic if for any distinct vertices x and y,the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y.We say that a graph is antimagic if it has an antimagic labeling.Hartsfield and Ringel conjectured in 1990 that every graph other than 2 K is antimagic.In this paper,we show that the antimagic conjecture is false for the case of disconnected graphs.Furthermore,we find some classes of disconnected graphs that are antimagic and some classes of graphs whose complement are disconnected are antimagic.
The decay number of a connected graph is defined to be the minimum number of the components of the cotree of the graph. Upper bounds of the decay numbers of graphs are obtained according to their edge connectivities. All the bounds in this paper are tight.Moreover, for each integer k between one and the upper bound, there are infinitely many graphs with the decay number k.