Satellite hyperspectral infrared sounder measurements have better horizontal resolution than other sounding techniques as it boasts the stratospheric gravity wave(GW)analysis.To accurately and efficiently derive the three-dimensional structure of the stratospheric GWs from the single-field-of-view(SFOV)Atmospheric Infra Red Sounder(AIRS)observations,this paper firstly focuses on the retrieval of the atmospheric temperature profiles in the altitude range of 20-60 km with an artificial neural network approach(ANN).The simulation experiments show that the retrieval bias is less than 0.5 K,and the root mean square error(RMSE)ranges from 1.8 to 4 K.Moreover,the retrieval results from 20 granules of the AIRS observations with the trained neural network(AIRS_SFOV)and the corresponding operational AIRS products(AIRS_L2)as well as the dual-regression results from the Cooperative Institute for Meteorological Satellite Studies(CIMSS)(AIRS_DR)are compared respectively with ECMWF T799 data.The comparison indicates that the standard deviation of the ANN retrieval errors is significantly less than that of the AIRS_DR.Furthermore,the analysis of the typical GW events induced by the mountain Andes and the typhoon"Soulik"using different data indicates that the AIRS_SFOV results capture more details of the stratospheric gravity waves in the perturbation amplitude and pattern than the operational AIRS products do.
YAO Zhi-gangHONG JunCUI Xing-dongZHAO Zeng-liangHAN Zhi-gang