We demonstrate radiation-pressure-driven mechanical oscillations from high optical quality factor silica microdisk resonators on chip. Mechanical quality factors of 3520 in air and 12540 in vacuum for the fundamental radial breathing modes are obtained from 73 μm-diarneter silica microdisks with mechanical frequencies of -51 MHz. The measured mechanical oscillation threshold powers for the input light are determined to be 62.5 μW in air and down to 26.6 μW in vacuum.
WANG GuanZhongZHAO MingMingMA JiYangLI GuanYuCHEN YuanJIANG XiaoShunXIAO Min
We experimentally demonstrate high optical quality factor silica microdisk resonators on a silicon chip with large wedge angles by reactive ion etching. For 2-μm-thick microresonators, we have achieved wedge angles of 59°, 63°,70°, and 79° with optical quality factors of 2.4 × 10~7, 8.1 × 10~6, 5.9 × 10~6, and 7.4 × 10~6, respectively, from ~80 μm diameter microresonators in the 1550 nm wavelength band. Also, for 1-μm-thick microresonators, we have obtained an optical quality factor of 7.3 × 10~6 with a wedge angle of 74°.
Quantum metrology holds the promise of improving the measurement precision beyond the limit of classical ap- proaches. To achieve such enhancement in performance requires the development of quantum estimation theories as well as novel experimental techniques. In this article, we provide a brief review of some recent results in the field of quantum metrology. We emphasize that the unambiguous demonstration of the quantum-enhanced precision needs a careful analysis of the resources involved. In particular, the implementation of quantum metrology in practice requires us to take into ac- count the experimental imperfections included, for example, particle loss and dephasing noise. For a detailed introduction to the experimental demonstrations of quantum metrology, we refer the reader to another article 'Quantum metrology' in the same issue.
We demonstrate ultralow-threshold thulium-doped, as well as thulium-holmium-codoped, microtoroid lasers on silicon chips, operating at the wavelength of around 2 ?m. High quality factor whispering gallery mode(WGM) microtoroid cavities with proper thulium and holmium concentrations are fabricated from the silica sol-gel films. The highly confined WGMs make the microcavity lasers operate with ultralow thresholds, approximately 2.8 ?W and 2.7 ?W for the thulium-doped and the thulium-holmium-codoped microlasers, respectively.