Nanofiber membranes from the composite of cellulose acetate/polyvinylpyrrolidone were prepared using electrospinning technique. After treated with water and alcoholic KOH to remove partially polyvinylpyrrolidone and deacetylate the cellulose acetate, the membranes were further functionalized with thiol groups using thioglycolic acid. Related materials were characterized using infrared and thermogravimetric analysis. And the results showed that the membranes were success of functionalisation. Then the nanofiber membranes were used in the sorption-desorption process. The effects of pH, contacting time and adsorption capacity of nanofiber membranes were studied against Cu(II), Cd(II) and Pb(II) ions. And the maximum adsorption capacities of Pb (II), Cu (II), and Cd (II) ions were estimated at 30.96, 19.63, 34.70 mg g-1. Our results suggested that the adsorption be- haviour of metal ions could be described using Langmuir model. Their adsorption kinetics was in agreement with the model of pseudo-second order, suggesting chemical adsorption as the rate-limiting step of the adsorption mechanism. The durability of the thiol-functionalized cellulose nanofiber membranes was also evaluated by repetitive adsorption-desorption.
以3-(甲基丙烯酰氧)丙基三甲氧基硅烷修饰的Fe3O4为载体,乙二醇二甲基丙烯酸酯为交联剂,4-硝基苯酚为模板分子,烯基离子液体1-乙烯基-3-乙基咪唑四氟硼酸盐为功能单体制备了磁性分子印迹聚合物(IL-MMIP),采用透射电镜、红外光谱和磁强计对磁性分子印迹聚合物进行表征,结果表明磁性载体表面成功地包覆了分子印迹聚合物层。IL-MMIP对4-硝基苯酚的吸附在10 min达到平衡,最大饱和吸附量达到20.98μmol/g。对比磁性非印迹聚合物,IL-MMIP对4-硝基苯酚具有较高的选择吸附性能。IL-M M IP萃取-高效液相色谱法对4-硝基苯酚、2-硝基苯酚、苯酚、间甲酚等4种酚类化合物进行检测,检测限在0.2-1.7μg/L。方法应用于自来水、嘉兴南湖水、焦化厂废水等实际样品中酚类化合物的检测,加标回收率在85.7%-100.5%。