A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π^*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles. An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and ho harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.
This article generalizes the formulas of Gauss-Ostrogradskii type for semibasic vector fields from Riemannian manifolds to real Finsler manifolds and obtains some formulas of Gauss-Ostrogradskii type for Finsler vector fields which are expressed in terms of the vertical and horizontal derivatives of the Cartan connection in real Finsler manifolds.
Let M be a complex n-dimensional manifold endowed with a strongly pseudoconvex complex Finsler metric F. Let M be a complex m-dimensional submanifold of M, which is endowed with the induced complex Finsler metric F. Let D be the complex Rund connection associated with (M, F). We prove that (a) the holomorphic curvature of the induced complex linear connection on (M, F) and the holomorphic curvature of the intrinsic complex Rund connection ~* on (M, F) coincide; (b) the holomorphic curvature of ~* does not exceed the holomorphic curvature of D; (c) (M, F) is totally geodesic in (M, F) if and only if a suitable contraction of the second fundamental form B(·, ·) of (M, F) vanishes, i.e., B(χ, ι) = 0. Our proofs are mainly based on the Gauss, Codazzi and Ricci equations for (M, F).
ZHONG ChunPing School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
In this paper, we consider the rough singular integral operators on product Triebel-Lizorkin spaces and prove certain boundedness properties on the Triebel-Lizorkin spaces. We also use the same method to study the fractional integral operator and the Littlewood-Paley functions. The results extend some known results.