The availability of resources for economic activities differs between regions, and the importance of the resources is consequently observed to be different within regions compared to a global scale. With the current situation in Chinese mining industry and its statistic characteristics, the characterization procedures of abiotic resource in life cycle impact assessment (LCIA) have demonstrated certain limita-tions in the Chinese materials industry. The aim of this paper is to propose new characterization and normalization factors for abiotic resource depletion categories such as metals and non-renewable en- ergy resources in a Chinese context. The actual production of abiotic resources calculated by a modi- fied model is compared to the reserve base in line with the new national standard to determine char- acterization factors in equivalence units, with antimony as the reference mineral. The normalization factors are based on the total base reserves of the most important minerals in China. A case study on primary magnesium production using the Pidgeon process is used to compare LCIA results for abiotic resource categories that are between current LCIA factors and the new Chinese factors. These factors not only reflect the importance of abiotic resource with respect to region-specific resource depletion, but also can compare with the global factors.
The availability of resources for economic activities differs between regions, and the importance of the resources is consequently observed to be different within regions compared to a global scale. With the current situation in Chinese mining industry and its statistic characteristics, the characterization procedures of abiotic resource in life cycle impact assessment (LCIA) have demonstrated certain limita-tions in the Chinese materials industry. The aim of this paper is to propose new characterization and normalization factors for abiotic resource depletion categories such as metals and non-renewable en- ergy resources in a Chinese context. The actual production of abiotic resources calculated by a modi- fied model is compared to the reserve base in line with the new national standard to determine char- acterization factors in equivalence units, with antimony as the reference mineral. The normalization factors are based on the total base reserves of the most important minerals in China. A case study on primary magnesium production using the Pidgeon process is used to compare LCIA results for abiotic resource categories that are between current LCIA factors and the new Chinese factors. These factors not only reflect the importance of abiotic resource with respect to region-specific resource depletion, but also can compare with the global factors.
A cradle-to-gate life cycle assessment was conducted in this paper to calculate the greenhouse gas (GHG) emissions, such as CO2, CH4, CF4 and C2F6 emissions, based on statistic data of Chinese aluminum industry of the year 2003. The results showed that the GHG emissions for 1 t primary aluminum production was 21.6 t CO2 equivalent which is 70% higher than that of worldwide average level of the year 2000. The main contributors of emission were the alumina refining and aluminum smelting process accounting for 72% and 22% in accumulative emission, respectively. According to the development and application of new process technologies for primary aluminum production and the ‘target of energy-saving and emissions-reducing’ of Chinese government, the reduction potential of the GHG emissions for alumina and aluminum production were estimated. The results indicated that China aluminum industry would achieve the target of reducing about 25% GHG emissions by the end of 2010.
A model with Chinese characterization factors for quantifying the damages to environment by land use in terms of the change in net primary productivity (NPP) of ecosystem was developed in the framework of life cycle assessment (LCA).In this method,the forms of land utilization were divided into two aspects involving long-term use of land (e.g.,for arable farming),namely "land occupation",and the change of land properties (e.g.,from agricultural area to urban area),namely "land transformation".Furthermore,the land use elementary flows (occupation and transformation) and parameters were linked to the impact indicators,and the characterization formulas of the two forms of land utilization were derived respectively according to the ecological theory.Moreover,based on this method,the characterization factors of both land occupation and land transformation were calculated using Chinese empirical information on NPP,which can be incorporated into LCA framework and applied to Chinese LCA case study to fill up the important gap in life cycle impact assessment (LCIA) of land use.
LIU Yu,NIE ZuoRen,SUN BoXue,WANG ZhiHong & GONG XianZheng School of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China