The effect of doping on the electrochemical performance was studied for spinel type Li1.02MxMn2-xQyO4-y used as cathode material in lithium-ion battery. TG/DTA curves of the precursor (the raw materials) doped with different elements were studied. The spinel materials Li1.02Mn2O4, Li1.02Co0.02Cr0.01La0.01Mn1.96F0.02O3.98, Li1.02Co0.02Cr0.01 La0.01Mn1.96Cl0.02O3.98, Li1.02Co0.02La1.02Mn1.97Cl0.02O3.98, Li1.02Co0.02Cr0.01Mn1.97O4, were prepared by solid-state reaction method after the pretreatment of conversion under low temperature and uniform mixing. X-ray diffraction patterns showed that all the samples had perfect spinel structure. SEM indicated that the particles of the samples had uni- form size and were distributed evenly. The results of the charge/discharge curves showed that Li1.02Co0.02Cr0.01La0.01Mn1.96F0.02O3.98 had better performance than other materials according to the inhibition of decline of reversible capacity of spinel Li1.02MxMn2-xQyO4-y. Therefore, cycle performance had been improved so obviously that 93.9% of the initial capacity were preserved after 100 cycles. Furthermore, electrochemical impedance tests were carried out with the spinel Li1.02Co0.02Cr0.01La0.01Mn1.96F0.02O3.98 as working electrode, Lithium as counter elec- trode and reference electrode. Results showed that this material possessed good charge/discharge reversible capa- bility and had the lowest impedance in 3.95 ̄4.25 V range (on the stage of charge / discharge).