This paper proposes a method of error detection based on macroblock (MB) types for video transmission. For decoded inter MBs, the absolute values of received residues are accumulated. At the same time, the intra textural complexity of the current MB is estimated by that of the motion compensated reference block. We compare the inter residue with the intra textural complexity. If the inter residue is larger than the intra textural complexity by a predefined threshold, the MB is considered to be erroneous and errors are concealed. For decoded intra MBs, the connective smoothness of the current MB with neighboring MBs is tested to find erroneous MBs. Simulation results show that the new method can remove those seriously-corrupted MBs efficiently. Combined with error concealment, the new method improves the recovered quality at the decoder by about 0.5--1 dB.
A novel image retrieval approach based on color features and anisotropic directional information is proposed for content based image retrieval systems (CBIR). The color feature is described by the color histogram (CH), which is translation and rotation invariant. However, the CH does not contain spatial information which is very important for the image retrieval. To overcome this shortcoming, the subband energy of the lifting directionlet transform (L-DT) is proposed to describe the directional information, in which L-DT is characterized by multi-direction and anisotropic basis functions compared with the wavelet transform. A global similarity measure is designed to implement the fusion of both color feature and anisotropic directionality for the retrieval process. The retrieval experiments using a set of COREL images demonstrate that the higher query precision and better visual effect can be achieved.