In this paper,a 60 kW proton exchange membrane fuel cell(PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes.To achieve an overall system model,the system is divided into five modules:the PEMFC stack(anode and cathode flows,membrane hydration,and stack voltage and power),cathode air supply(air compressor,supply manifold,cooler,and humidifier),anode fuel supply(hydrogen valve and humidifier),cathode exhaust exit(exit manifold and water return),and power conditioning(DC/DC and DC/AC) modules.Using a combination of empirical and physical modeling techniques,the model is developed to set the operation conditions of current,temperature,and cathode and anode gas flows and pressures,which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system.The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system,which is mathematically simple for system parameters and control designs.
Ying-ying ZHANGJi-chang SUNYing ZHANGXi LIOuang-yi CAO
Given the definition of the reference Knudsen number for micro gas journal bearings,the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas journal bearings based on Burgdorfer's first-order slip boundary condition is proposed that takes into account the gas rarefaction effect. The finite difference method (FDM) is adopted to solve the modified Reynolds equation to obtain the pressure profiles,load capacities and attitude angles for micro gas journal bearings at different reference Knudsen numbers,bearing numbers and journal eccentricity ratios. Numerical analysis shows that pressure profiles and non-dimensional load capacities decrease markedly as gas rarefaction in-creases. Attitude angles change conversely,and when the eccentricity ratio is less than 0.6,the attitude angles rise slightly and the influence of the reference Knudsen number is not marked. In addition,the effect of gas rarefaction on the non-dimensional load capacity and attitude angle decreases with smaller bearing numbers.