In this paper we consider a kind of exterior transmission problem in which the refractive index n(x) is a piecewise positive constant. Through establishing an equivalent boundary integral system, we obtain that the set of exterior transmission eigenvalues is a discrete set. Furthermore, we prove that there does not exist a transmission eigenvalue under some conditions.
We consider a kind of scattering problem by a crack F that is buried in a bounded domain D, and we put a point source inside the domain D. This leads to a mixed boundary value problem to the Helmholtz equation in the domain D with a crack Г. Both sides of the crack F are given Dirichlet-impedance boundary conditions, and different boundary condition (Dirichlet, Neumann or Impedance boundary condition) is set on the boundary of D. Applying potential theory, the problem can be reformulated as a system of boundary integral equations. We establish the existence and uniqueness of the solution to the system by using the Fredholm theory.