We study the initial boundary value problem to the system of the compressible Navier-Stokes equations coupled with the Maxwell equations through the Lorentz force in a bounded annulus Ω of R3. And a result on the existence and uniqueness of global spherically symmetric classical solutions is obtained. Here the initial data could be large and initial vacuum is allowed.
HONG GuangYiHOU XiaoFengPENG HongYunZHU ChangJiang
This paper investigates the large-time behavior of solutions to an outflow problem for a compressible non-Newtonian fluid in a half space. The main concern is to analyze the phenomena that happens when the compressible non-Newtonian fluid blows out through the boundary. Based on the existence of the stationary solution, it is proved that there exists a boundary layer(i.e., the stationary solution) to the outflow problem and the boundary layer is nonlinearly stable under small initial perturbation.
This paper is concerned with the asymptotic behavior of the solution to the Euler equations with time-depending damping on quadrant(x,t)∈R^+×R^+,with the null-Dirichlet boundary condition or the null-Neumann boundary condition on u. We show that the corresponding initial-boundary value problem admits a unique global smooth solution which tends timeasymptotically to the nonlinear diffusion wave. Compared with the previous work about Euler equations with constant coefficient damping, studied by Nishihara and Yang(1999), and Jiang and Zhu(2009, Discrete Contin Dyn Syst), we obtain a general result when the initial perturbation belongs to the same space. In addition,our main novelty lies in the fact that the cut-off points of the convergence rates are different from our previous result about the Cauchy problem. Our proof is based on the classical energy method and the analyses of the nonlinear diffusion wave.