This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.
In this study, the Gibbs-Duhem equation was applied to make the thermodynamic consistency test and thermodynamic model estimation for systems of CO2-DME (dimethyl ether), DME-CH3OH, CO2-CH3OH and DME-C2H5OH systems on the basis of the vapor-liquid equilibrium (VLE) experimental data in published reports. And the NRTL binary interaction parameters of the systems mentioned above were regressed by the VLE data and were subjected to a thermodynamic consistency test because the study showed that PR-NRTL model combination was appropriate for the four systems mentioned above. The regressed binary interaction parameters were used to es-timate the VLE for DME-CO2-CH3OH at temperatures of 313.15K and 333.15K, and the estimated result was coin-cident with the experimental data. On the basis of the predicted VLE data for systems of DME-CO2-CH3OH and DME-CO2-C2H5OH, the VLE behaviors of the two systems were studied by the phase diagrams of these two ter-nary systems, with the forms of both the two dimensional and three dimensional phase diagrams, respectively.