In this paper, we consider a class of optimal control problem for the singularly perturbed hybrid dynamical systems. By means of variational method, we obtain the necessary conditions of the hybrid dynamical systems. Meanwhile, the existence of solution for the hybrid dynamical system is proved by the sewing method and the uniformly valid asymptotic expansion of the optimal trajectory is constructed by the boundary function method. Finally,an example is presented to illustrate the result.
In this paper bifurcations of heterodimensional cycles with highly degenerate conditions are studied in three dimensional vector fields,where a nontransversal intersection between the two-dimensional manifolds of the saddle equilibria occurs.By setting up local moving frame systems in some tubular neighborhood of unperturbed heterodimensional cycles,the authors construct a Poincar′e return map under the nongeneric conditions and further obtain the bifurcation equations.By means of the bifurcation equations,the authors show that different bifurcation surfaces exhibit variety and complexity of the bifurcation of degenerate heterodimensional cycles.Moreover,an example is given to show the existence of a nontransversal heterodimensional cycle with one orbit flip in three dimensional system.