Tetradecyldimethylbenzyl ammonium salt(TDMBA) cations were intercalated into sodium montmorillonite(Na-MMT) by an ion exchange reaction. The resulting TDMBA-MMT was characterized by Fourier-transform infrared spectroscopy(FTIR), thermogravimetric analysis(TGA), and X-ray diffraction(XRD). Moreover, the antibacterial activity and water-resistance of TDMBA-MMT were investigated. The results show that TDMBA cations are intercalated into the Na-MMT. The onset temperature of decomposition of TDMBA cations in TDMBA-MMT is raised about 60 ℃ higher than that of tetradecyldimethylbenzyl ammonium chloride(TDMBACl), and the d(001) spacing enlarged from 1.23 nm to 2.10 nm. 0.1 mg/mL TDMBA-MMT is fully enough to kill all the Staphylococci aureus(S, aureus) and more than 99.99% of the Escherichia coli(E, coli) in a sample solution within 6.0 h touch, and the TDMBA-MMT also shows long acting properties.
Zn-montmorillonites(Zn-MMTs) as antibacterial compounds were prepared by an ion-exchange reaction. The reaction time, initial pH value and molar ratios of CEC influencing zinc content in Zn-MMTs were investigated, and Zn-MMTs were characterized by means of EDX, XRD, XPS, and SEM. The results of bacterial growth tests were confirmed by determination of the minimum inhibition concentrations (MICs) and minimum bactericidal concentrations (MBCs). The experimental results show that the zinc is confirmed as bivalent zinc state, the d001 basal spacing of Zn-MMTs is enlarged with the enhancement of the zinc content, and the particles of Zn-MMTs are formed with irregular shape. Moreover, the antibacterial activity of Zn-MMTs increases with increasing the zinc content, and Zn-MMT-3 containing 6.76 mass% of zinc exhibits optimum antibacterial activity against Escherichia coli and Staphylococcus aureus.