This study develops a way of analyzing moisture movement in unsaturated expansive soil slope. The basic equations and the integrated finite difference method for moisture movement in unsaturated soils are briefly described, and the calculation code MFUS2 has been developed. The moisture movements in unsaturated expansive soil slopes suffering precipitation were simulated numerically. The simulation results show that expansion or contraction must be taken into account in an analysis model. A simplified equivalent model for calculating rainwater infiltration into expansive soil slopes has been developed. The simplified equivalent model divides the soil slope into two layers according to the extent of weathering of the soil mass at depth. Layer Ⅰ is intensively weathered and moisture can be fully evaporated or rapidly absorbed. The moisture movement parameters take into account the greater soil permeability caused by fissures. Layer Ⅱ is unweathered and the soil is basically undisturbed. The moisture movement parameters of homogeneous soils are applicable. The moisture movements in unsaturated ex- pansive soil slopes suffering precipitation were simulated numerically using the simplified equivalent model. The simulation results show that the moisture movement in the expansive soil slope under rainfall permeation mainly takes place in the extensively weathered layer Ⅰ which closely simulates the real situation.