Recently, we developed a nonbuckling interconnect design that provides an effective approach to simultaneously achieving high elastic stretchability, easiness for encapsulation, and high electric performance for stretchable electronics. This paper aims to systematically study its mechanical and electric behaviors, including comparisons of the nonbuckling and buckling interconnect designs on stretchability, effects of the thickness on electric performance, and modeling and experimental investigations on the finite deformation mechanics. It is found that the results on stretchability depend on the layouts. Long straight segments and small arc radii for nonbuckling interconnects yield an enhancement of stretchability, which is much better than that of buckling designs. On the other hand, shorter straight segments or thicker interconnects are better to lower the resistances of interconnects.Therefore, optimization of the designs needs to balance the requirements of both the mechanical and electric performances. The finite deformation of interconnects during stretching is analyzed. The established analytic model is well validated by both the finite element modeling and experimental investigations. This work is key for providing the design guidelines for nonbucklingbased stretchable electronics.