Nano-particle capture is a key process in filtration, separation, and biomedical applications. Here we explored the mechanisms of soft particle capture using nanofiber networks. We identified possible states of the capture process, which are defined by their structural and material parameters. By performing numerical analysis, we provided a phase diagram in the parametric space of the network structure and interracial adhesion. The work provides a conceptual model for rational design of synthetic materials in related applications that focus on the protection against or removal of virus, as well as other soft particles.
Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes, which thus demand an in-depth understanding. One of the critical issues from the application viewpoint is the stability of the bio-nano hybrid under mechanical perturbations. In this work we explore mechanical responses of the interface between lipid bilayer and graphene under hydrostatic coating provides remarkable resistance to the pressure or indentation loads, We find that graphene loads, and the intercalated water layer offers additional protection. These findings are discussed based on molecular dynamics simulation results that elucidate the molecular level mechanisms, which provide a basis for the rational design of bionanotechnology- enabled aoolications such as biomedical devices and nanotheraoeutics.
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.