The fictitious compress recovery approach is introduced, which could be applied to the establishment of the Rungerarup theorem, the determination of the Bjerhammar's fictitious gravity anomaly, the solution of the "downward con- tinuation" problem of the gravity field, the confirmation of the convergence of the spherical harmonic expansion series of the Earth's potential field, and the gravity field determination in three cases: gravitational potential case, gravitation case, and gravitational gradient case. Several tests using simulation experiments show that the fictitious compress recovery approach shows promise in physical geodesy applications.
Using 1 Hz sampling records at one superconducting gravimeter (SG) station and 11 broadband seismometer stations, we found anomalous signals prior to the 2008 Wenchuan (汶川) earthquake event. The tides are removed from the original SG records to obtain the gravity residuals. Applying the Hilbert-Huang transform (HHT) and the wavelet analysis to the SG gravity residuals leads to time-frequency spectra, which suggests that there is an anomalous signal series around 39 h prior to the event. The period and the magnitude of the anomalous signal series are about 8 s and 3×10^-8 m/s^2 (3 μGal), respectively. In another aspect, applying HHT analysis technique to 11 records at broadband seismometer stations shows that most of them contain anomalous signals prior to the Wenchuan event, and the marginal spectra of 8 inland stations show an apparent characteristic of double peaks in anomalous days compared to the only one peak of the marginal spectra in quiet days. Preliminary investigations suggest that the anomalous signals prior to the earthquake are closely related to the low-frequency earthquake (LFE). We concluded that the SG data as well as the broadband seismometers records might be significant information sources in detecting the anomalous signals prior to large earthquakes.
The purpose of this study is to develop probabilistic seismic hazard maps for Yangon and its surrounding areas including 'Peak Ground Acceleration' values for 2% and 10 % probability of the exceedance in 50 years at rock sites. The present study area is situated between the latitudes of N 13°37′ and N 20°2′' and the longitudes of E 93°35′ and E 99°5′. The study areas are focused on nine source zones centered around Yangon with the radius of about 200 km. The probabilistic seismic hazard maps are created by ArcGIS-9.3 software.