A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.
SHEN ChangLe, XIE WenJun & WEI BingBo Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China
Containerless treatment of Bi-58.5at%Ga hypermonotectic alloy is successfully performed with acous-tic levitation technique. Under acoustic levitation condition,the second phase (Ga) distributes almost homogeneously in solidification sample,opposite to macrosegregation in solidification sample under conventional condition. Stokes motion of the second liquid droplet (Ga) is significantly restrained un-der acoustic levitation condition. The analyses indicate that the melt vibration in the gravity direction forced by acoustic field can induce steady flow around the second liquid droplet,which influences droplet shape during its moving upward and consequently restrains Stokes motion velocity of the second liquid droplet.
The solidification of Pb-16%Sb hypereutectic alloy is investigated within ultrasonic field with a fre-quency of 15 kHz. It is found that the ultrasonic field promotes crystal nucleation and terminates the further bulk undercooling of the alloy melt. Theoretical analysis shows that the cavitation effect and the forced bulk vibration are the main factors that reduce the undercooling level. With the increase of ul-trasound intensity, the primary (Sb) phase experiences a growth mode transition from faceted to non-faceted branched growth, and the macrosegregation of primary (Sb) phase is gradually sup-pressed. In addition, the microstructures of Pb-Sb eutectic exhibit a conspicuous coarsening with in-creasing ultrasound intensity, and a structural transition of “lamellar eutectic—anomalous eutectic” occurs when ultrasound intensity rises up to 1.6 W/cm2. The ultrasonic field also changes the solute distribution adjacent to the solidification front, which lowers the Pb contents in primary (Sb) phase.