本文研究了调制白噪声激励下多自由度时滞非线性系统的近似瞬态响应概率密度.首先,由系统当前状态与时滞状态的关系,将原时滞系统近似等效为无时滞系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可通过级数式表示,基函数为幅值相关正交函数,系数为时间函数.应用Galerkin方法,系数可由一阶线性微分方程组解得,从而得出幅值响应的瞬态概率密度、状态空间概率密度及幅值统计矩的半解析表达式.最后,以调制白噪声激励下阻尼耦合的二自由度Duffing-van der Pol振子系统为例,验证其求解过程,并讨论不同时滞的影响.
研究调制白噪声激励下,包含弱非线性阻尼及强非线性刚度的单自由度系统的近似瞬态响应概率密度.应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可近似表示为适当的正交基函数的级数和,其中系数是随时间变化的.应用Galerkin方法,这些系数可由一阶线性微分方程组解得,从而可得幅值响应的瞬态概率密度的半解析表达式及系统状态响应的瞬态概率密度和幅值的统计矩.以受调制白噪声激励的van der Pol-Duffing振子为例验证其求解过程,并讨论了线性阻尼系数及非线性刚度系数等系统参数对系统响应的影响.