您的位置: 专家智库 > >

国家自然科学基金(11072182)

作品数:4 被引量:19H指数:2
相关作者:康艳梅张广丽吕希路徐超更多>>
相关机构:西安交通大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学电子电信一般工业技术更多>>

文献类型

  • 4篇期刊文章
  • 1篇会议论文

领域

  • 3篇电子电信
  • 3篇理学
  • 1篇一般工业技术

主题

  • 3篇信号
  • 2篇信号检测
  • 2篇噪声
  • 2篇弱信号
  • 2篇弱信号检测
  • 2篇随机共振
  • 2篇APPROX...
  • 1篇噪声环境
  • 1篇双稳系统
  • 1篇随机共振现象
  • 1篇平均响应时间
  • 1篇周期信号
  • 1篇非高斯
  • 1篇非高斯噪声
  • 1篇高斯
  • 1篇高斯噪声
  • 1篇STOCHA...
  • 1篇WEAKLY
  • 1篇ADDITI...
  • 1篇COUPLE...

机构

  • 3篇西安交通大学

作者

  • 3篇康艳梅
  • 2篇吕希路
  • 2篇张广丽
  • 1篇徐超

传媒

  • 2篇物理学报
  • 1篇Acta M...
  • 1篇Theore...
  • 1篇第十三届全国...

年份

  • 1篇2014
  • 2篇2012
  • 2篇2011
4 条 记 录,以下是 1-5
排序方式:
α稳定噪声环境下过阻尼系统中的参数诱导随机共振现象被引量:14
2012年
本文采用随机模拟方法,研究了过阻尼振子系统在α稳定噪声环境下的参数诱导随机共振现象.结果表明,在α噪声环境下,调节系统参数能够诱导随机共振现象;而且调节非线性项参数时,随机共振效果随α稳定噪声的指数的减小而减弱,但当调节线性项参数时,随机共振效果则随着α稳定噪声的特征指数的减小而增强.本文的结论在α稳定噪声环境下,利用参数诱导随机共振原理进行弱信号检测方面具有重要的理论意义,并有助于理解不同α稳定噪声对一般随机共振系统的共振效果的影响.
张广丽吕希路康艳梅
关键词:随机共振弱信号检测
非高斯噪声激励下含周期信号FitzHugh-Nagumo系统的响应特征被引量:2
2011年
研究了非高斯噪声激励下含周期信号的FHN模型的动力学行为.通过计算神经元的平均响应时间、观察神经元的共振活化和噪声增强稳定现象,分析了非高斯噪声对神经元动力学行为的影响.发现通过改变非高斯噪声的相关时间可以有效地改变共振活化和噪声增强稳定现象.观察到在强相关噪声下不同强度的非高斯噪声抑制了神经元的噪声增强稳定现象而共振活化现象几乎不变,也就是非高斯噪声有效地增强了神经响应的效率.观察了平均响应时间与非高斯噪声参数q之间的关系,当q为一个有限的小于1的值时,平均响应时间取得最小值.最后表明在一定条件下,非高斯噪声出现重尺度现象,即非高斯噪声产生的效果可以由高斯白噪声来估计.
徐超康艳梅
关键词:非高斯噪声平均响应时间
参数诱导随机共振原理实现alpha稳定噪声中的弱信号检测
本文采用随机模拟方法并基于随机共振原理,研究了含alpha稳定噪声的过阻尼双稳系统对弱周期信号的检测。首先,在观察不同系统参数下输出信号的平均时间历程和功率谱的基础上,阐明了在alpha稳定噪声背景下通过调控系统参数检测...
张广丽吕希路康艳梅
关键词:随机共振弱信号检测双稳系统
文献传递
Effect of spatially correlated noise on stochastic synchronization in globally coupled FitzHugh–Nagumo neuron systems
2014年
The phenomenon of stochastic synchronization in globally coupled FitzHugh–Nagumo(FHN) neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation(DMA) and direct simulation(DS). Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.
Yange ShaoYanmei Kang
Stochastic resonance in coupled weakly-damped bistable oscillators subjected to additive and multiplicative noises被引量:3
2012年
With coupled weakly-damped periodically driven bistable oscillators subjected to additive and multiplicative noises under concern, the objective of this paper is to check to what extent the resonant point predicted by the Gaussian distribution assumption can approximate the simulated one. The investigation based on the dynamical mean-field approx- imation and the direct simulation demonstrates that the pre- dicted resonant point and the simulated one are basically co- incident for the case of pure additive noise, but for the case including multiplicative noise the situation becomes some- what complex. Specifically speaking, when stochastic res- onance (SR) is observed by changing the additive noise in- tensity, the predicted resonant point is lower than the sim- ulated one; nevertheless, when SR is observed by chang- ing the multiplicative noise intensity, the predicted resonant point is higher than the simulated one. Our observations im- ply that the Gaussian distribution assumption can not exactly describe the actual situation, but it is useful to some extent in predicting the low-frequency stochastic resonance of the coupled weakly-damped bistable oscillator.
Yan-Mei KangMei WangYong Xie
共1页<1>
聚类工具0