A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fibonacci series, Powell's optimization theory is used to perform the stochastic identification of material constants of the thin-walled curve box. Then, the steps in the parameter identification are presented. Powell's identification procedure for material constants of the thin-walled curve box is compiled, in which the mechanical analysis of the thin-walled curve box is completed based on the finite curve strip element (FCSE) method. Some classical examples show that Powell's identification is numerically stable and convergent, indicating that the present method and the compiled procedure are correct and reliable. During the parameter iterative processes, Powell's theory is irrelevant with the calculation of the FCSE partial differentiation, which proves the high computation efficiency of the studied methods. The stochastic performances of the system parameters and responses axe simultaneously considered in the dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step length is solved by adopting the Fibonacci series search method without the need of determining the region, in which the optimized step length lies.
The FCSE controlling equation of pinned thinwalled curve box was derived and the indeterminate problem of continuous thin-walled curve box with diaphragm was solved based on flexibility theory. With Bayesian statistical theory,dynamic Bayesian error function of displacement parameters of indeterminate curve box was founded. The corresponding formulas of dynamic Bayesian expectation and variance were deduced. Combined with one-dimensional Fibonacci automatic search scheme of optimal step size,the Powell optimization theory was utilized to research the stochastic identification of displacement parameters of indeterminate thin-walled curve box. Then the identification steps were presented in detail and the corresponding calculation procedure was compiled. Through some classic examples,it is obtained that stochastic performances of systematic parameters and systematic responses are simultaneously deliberated in dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step size is solved by adopting Fibonacci search method. And the Powell identification of displacement parameters of indeterminate thin-walled curve box has satisfied numerical stability and convergence,which demonstrates that the presented method and the compiled procedure are correct and reliable.During parameters鈥?iterative processes,the Powell theory is irrelevant with the calculation of finite curve strip element(FCSE) partial differentiation,which proves high computation effciency of the studied method.
For multi-cell curve box girder, the finite strip governing equation was derived on the basis of Novozhilov theory and orthogonal property of harmonious function series. Dynamic Bayesian error function of mechanical parameters of multi-cell curve box girder was achieved with Bayesian statistical theory. The corresponding formulas of dynamic Bayesian expectation and variance were obtained. After the one-dimensional optimization search method for the automatic determination of step length of the mechanical parameter was put forward, the optimization identification calculative formulas were also obtained by adopting conjugate gradient method. Then the steps of dynamic Bayesian identification of mechanical parameters of multi-cell curve box girder were stated in detail. Through analysis of a classic example, the dynamic Bayesian identification processes of mechanical parameters are steadily convergent to the true values, which proves that dynamic Bayesian theory and conjugate gradient theory are suitable for the identification calculation and the compiled procedure is correct. It is of significance that the foreknown information of mechanical parameters should be set with reliable practical engineering experiences instead of arbitrary selection.
The critical lengths of an oscillator based on double-walled carbon nanotubes(DWCNTs)are studied by energy minimization and molecular dynamics simulation.Van der Waals(vdW)potential energy in DWCNTs is shown to be changed periodically with the lattice matching of the inner and outer tubes by using atomistic models with energy minimization method.If the coincidence length between the inner and outer tubes is long enough,the restoring force cannot drive the DWCNT to slide over the vdW potential barrier to assure the DWCNT acts as an oscillator.The critical coincidence lengths of the oscillators are predicted by a very simple equation and then confirmed with energy minimization method for both the zigzag/zigzag system and the armchair/armchair system.The critical length of the armchair/armchair system is much larger than that of the zigzag/zigzag system.The vdW potential energy fluctuation of the armchair/armchair system is weaker than that of the zigzag/zigzag system.So it is easier to slide over the barrier for the armchair/armchair system.The critical lengths of zigzag/zigzag DWCNTbased oscillator are found increasing along with temperature,by molecular dynamics simulations.