We report the design and simulation of a dual-band perfect terahertz absorber which is composed of an electric Split-Resonance-Ring(eSRR) layer, polyimide spacer and a metal plate layer. The absorber has two near-unity absorptions near 0.502 THz and 0.942 THz and both are related to the LC resonance of the eSRR. The results show that the designed terahertz absorber is an excellent electromagnetic wave concentrator. The electromagnetic waves are firstly converged into the spacer and the eSRR layer and are then significantly absorbed.
WEN Qi-ye XIE Yun-song ZHANG Huai-wu YANG Qing-hui LIU Bao-yuan
Arising from the proposed Transmission Line(TL) model for ERR and wire structure, a TL model for a metamaterial absorber is proposed. The S-parameters obtained by this TL model demonstrate the same shapes as the simulation. An investigation of the TL model and average absorption power densities shows that the metamaterial absorber does not simply convert the electromagnetic wave into thermal energy, but concentrate the electromagnetic wave into a small space where it is finally absorbed. This suggests that the metamaterial absorber can be applied to solar cells for the purpose of light trapping.
WEN Qi-ye ZHANG Huai-wu XIE Yun-song YANG Qing-hui LI Yuan-xun