The project aims to develop an integrated linear-scaling time-dependent density functional theory (TD-DFT) for studying low-lying excited states of luminescent molecular materials, especially those fluorescence and phosphorescence co-emitting systems. The central idea will be "from fragments to molecule" (FF2M). That is, the fragmental information will be employed to synthesize the molecular wave function, such that the locality (transferability) of the fragments (functional groups) is directly built into the algorithms. Both relativistic and spin-adapted open-shell TD-DFT will be considered. Use of the renormalized exciton method will also be made to further enhance the efficiency and accuracy of TD-DFT. Solvent effects are to be targeted with the fragment-based solvent model. It is expected that the integrated TD-DFT and program will be of great value in rational design of luminescent molecular materials.