This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu307-x films on (00/) LaAIO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10-15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films
The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high temperature superconductor YBa2Cu3O7-δ (YBCO) preparation. In this technique, the purity, evaporation characteristics and thermostability of adopted precursors will de- cide the quality and reproducible results of YBCO film. In the present report, tris(2,2,6,6-tetramethyl-3,5-heptanedionato)yttrium(III) (Y(TMHD)3) was synthesized by the interaction of yttrium nitrate hydrate with TMHD in methanol solution, and its structure was identified by FTIR, 1H NMR, 13C NMR and EI-MS spectroscopy. Subsequently, the thermal property and the kinetics of decomposition were system- atically investigated by non-isothermal thermogravimetric analysis methods (TGA) at different heating rates in streams of N2, and the average apparent activation energy of evaporation process was evaluated by the Ozawa, Kissinger and Friedman methods. The possible conversion function was estimated through the Coats-Redfern method to characterize the evaporation patterns and followed a phase boundary reaction mechanism by the contracting area equation with average activation energy of 88.9 kJ/mol.