P-xylene(p-C_(8)H_(10))is extremely harmful and dangerous to human health due to high toxicity and strong carcinogenicity.Exploring sensitive material to effectively detect p-xylene is of importance.In this paper,perovskite single crystal(C_(4)H_(9)NH_(3))_(2)PbI_(4) has been successfully synthesized via solution method.The obtained product was analyzed by single crystal X-ray diffraction.With the space group Pbca,orthorhombic(C_(4)H_(9)NH_(3))_(2)PbI_(4) layered perovskite structure consists of an extended two-dimensional network of corner-sharing PbI_(6) octahedron.Single layer perovskite sheets of distorted PbI_(6) octahedron alternated with protonated n-butylammonium cation bilayers,which offers many advantages and provides the possibility of forming a gas sensor device based on the change of resistances.Density functional theory(DFT)simulations regarding the adsorption energy revealed that this organicinorganic hybrid perovskite compound has excellent selectivity toward p-xylene compared with other gases including C_(2)H_(5)OH,C_(6)H_(6),CH_(2)Cl_(2),HCHO,CH_(3)COCH_(3) and C_(7)H_(8).The calculation of electron density,density of states and electron density difference showed the sensing mechanism of p-C_(8)H_(10) is mainly derived from physical adsorption-desorption in view of electron transfer.
Coordination polymers(CPs) are emerging as the next generation of macromolecule materials in many industrial and technological applications,e.g.gas/humidity sensing.The design of CP-based sensors with high performance and low cost is of significance,but this work is still in the infancy stage.In this contribution,a new one dimensional(1D) CP has been successfully synthesized by a simple solvent evaporation method at room temperature,namely [Co(DPP)(H_(2)O)_(2)]n·(TCA)2(H_(2)O)_(4)(named as Co-1,HTCA=3-thiophenezoic acid,DPP=1,3-di(4-pyridyl)propane).The Co-1 structure contains abundant H-bonding interactions,weaving it from 1D chain structure into three dimensional(3D) pillared-layer structure.As an impedimetric humidity sensing material,this CP exhibits short response time,small hysteresis,excellent repeatability,and good stability in the working range of 11%-97% relative humidity(RH).Furthermore,it also shows excellent performance in monitoring the moisture content of human finger skin.By analyzing the complex impedance spectra,the humidity sensing mechanism of Co-1 sensor was expounded at different RH ranges.
A novel red phosphor Eu3+ doped magnesium titanate (MgTiO3) was synthesized via sol-gel method. The X-ray diffraction patterns (XRD) revealed that a pure MgTiO3 phase was obtained. Its excitation spectrum consisted of a broad band (〈350nm) and a series of narrow bands in the long wavelength, and the strongest excitation peak at 465nm might be exited by GaN-chip to emit red light for white LED. The phosphors showed strong emission at 614nm which could be attributed to the 5D0→7F2 emission of Eu3+ . The emission intensity of MgTiO3:Eu3+ phosphor reached the maximum at the Eu3+ concentration of 3.5mol.%. The luminescent properties (such as emission intensity and decay times) were further improved by introducing Al3+ as a charge compensator, demonstrating potential applications in white LED.
CaTiO3:Eu3+ red phosphors were prepared using H3BO3 assisted solid state synthesis. The structure and morphology of the obtained sample were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And the luminescence property was measured using photoluminescence excitation (PLE) and photoluminescence (PL) spectra, respectively. In the excitation spectra, main excitation peaks of the prepared samples were centered at 397 and 465 nm, revealing that these phosphors could be excited by commercial GaN- and InGaN-typed light emitting diodes (LEDs). Dominant emission peaks of the phosphors were located at 616 nm, owing to the transition of 5D0→7F2 of Eu3+. In the optimum condition, CaTiO3:3%Eu3+ phosphor was obtained at a sintering temperature of 1200 °C in air with a content of 20 mol.% H3BO3 addition. When excited by 397 nm irradiation, the PL intensity of as-prepared red phosphor was 2.2 times higher than that of samples obtained by traditional solid state synthesis, while the PL intensity was 3 times higher than that excited by 465 nm irradiation. The added H3BO3 improved the crystallinity, and increased the color purity, implying the potential to be a promising red phosphor in white light emitting diodes (WLEDs).