Jasmonate (JA) regulates plant development, mediates defense responses, and induces anthocyanin biosynthesis as well. Previously, we isolated the psc1 mutant that partially suppressed coi1 insensitivity to JA, and found that brassinosteroid (BR) was involved in JA signaling and negatively regulated JA inhibition of root growth in Arabidopsis. In this study it was shown that JA-induced anthocyanin accumulation was reduced in BR mutants or in wild type treated with brassinazole, an inhibitor of BR biosynthesis, whereas it was induced by an application of exogenous BR. It was also shown that the‘late’anthocyanin biosynthesis genes including DFR, LDOX , and UF3GT, were induced slightly by JA in the BR mutants relative to wild type. Furthermore, the expression level of JA-induced Myb/bHLH transcription factors such as PAP1, PAP2, and GL3, which are components of the WD-repeat/Myb/bHLH transcriptional complexes that mediate the ‘late’ anthocyanin biosynthesis genes, was lower in the BR mutants than that in wild type. These results suggested that BR affects JA-induced anthocyanin accumulation by regulating the ‘late’ anthocyanin biosynthesis genes and this regulation might be mediated by the WD-repeat/Myb/bHLH transcriptional complexes.
The transcription factor WRKY70 was previously reported to be a common component in salicylic acid (SA) and jasmonate (JA) mediated signal pathways in Arabidopsis. Here, we present that the inactivation of the WRKY70 gene in wrky70-1 mutant does not alter the responses of both JA and SA, and that wrky70 mutation is unable to restore the coil mutant in JA responses. However, overexpression of WRKY70 reduces JA responses such as expression of JA-induced genes and JA-inhibitory root growth, and activates expression of SA-inducible PR1. These data indicate that the WRKY70 is important but not indispensable for JA and SA signaling, and that other regulators may display the redundant role with WRKY70 in modulation of JA and SA responses in Arabidopsis. Furthermore, we showed that JA inhibits expression of WRKY70 and PR1 by both COi1-dependent and COi1-independent pathways.