In this paper,we investigate the behaviors of dual fermion condensate in QED 3 under variation of temperature.By means of Dyson-Schwinger equation for the fermion propagator,we extract the dual fermion condensate and compare its behavior with the ordinary chiral fermion condensate and the chiral susceptibility.It is found that the dual fermion condensate cannot be regarded as the order parameter for the confinement-deconfinement phase transition in QED 3.Furthermore,the change of the dual fermion condensate around the chiral phase transition point observed in the present work must therefore be interpreted as solely induced by the chiral transition.
Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.
Based on three-dimensional quantum electrodynamics theory,a set of truncated Dyson-Schwinger(D-S) equations are solved to study photon and fermion propagators with the effect of vacuum polarization.Numerical studies show that condensation and the value of fermion mass depends heavily on how the D-S equations are truncated.By solving a set of coupled D-S equations,it is also found that the fermion propagator shows a clear dependence on the order parameter.The truncated D-S equations under unquenched approximation are used to study the mass-function and chiral condensation of the fermions.The results under the unquenched approximation are clearly different from the ones under quenched approximation.With the increase in the order parameter,the fermion condensation in the unquenched approximation decreases when 0≤ξ5,while it increases when ξ5.However,nothing like this is observed in the quenched approximation,which indicates that there may be flaws in the quenched approximations.