In this paper, by Schauder’s fxed point theorem and the contraction mapping principle, we consider the existence and stability of T-anti-periodic solutions to fractional diferential equations of order α∈(0,1). An example is given to illustrate the main results.
The existence of homoclinic solutions for the second-order p-Laplacian differential system( ρ( t) Φp( u'( t))) '-s( t) Φp( u( t))+ λf( t,u( t)) = 0 with impulsive effects Δ( ρ( tj) Φp( u'( tj))) = Ij( u( tj)) is studied. By using three critical points theorem and variational methods, the sufficient condition is established to guarantee that this p-Laplacian differential system with impulsive effects has at least one nontrivial homoclinic solution. Besides,an example is presented to illustrate the main result in the end of this paper.
In this paper, we consider a class of nonlinear fractional differential equation boun- dary value problem with a parameter. By some fixed point theorems, sufficient con- ditions for the existence, nonexistence and multiplicity of positive solutions to the system are obtained. An example is given to illustrate the main results.