We investigate oscillation of certain second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients. We use some different techniques and apply Riccati transformation to establish new oscillatory criteria which include two necessary and sufficient conditions. Moreover, we point out that how the power γ plays its role. Some interesting examples are given to illustrate the versatility of our results.
This paper concerns the oscillation of solutions of the second order nonlinear dynamic equation with p-Laplacian and damping(r(t)φ(x^△(t))^△+p(t)φα(x^△α(t)+q(t)f(xδ(t))=0on a time scale T which is unbounded above. Sign changes are allowed for the coefficient functions r, p and q. Several examples are given to illustrate the main results.