The interaction between the typhoons Fengshen and Fung-wong over the Western Pacific in 2002 is studied with the Conditional Nonlinear Optimal Perturbation(CNOP) method.The study discovered that the CNOP method reveals the process of one-way interaction between Fengshen and Fung-wong.Moreover,if the region of Fung-wong was selected for verification,the sensitivity area was mainly located in the region of Fengshen and presented a half-ring structure;if the region of Fengshen was selected for verification,most of the sensitivity areas were located in the region between the Fengshen and the subtropical high,far away from Fung-wong.This indicated that Fung-wong is mainly steered by Fengshen,but Fengshen is mainly affected by the subtropical high.The sensitivity experiment showed that the initial errors in the CNOP-identified sensitive areas have larger impacts on the verification-area prediction than those near the typhoon center and their developments take a large proportion in the whole domain.This suggests that the CNOP-identified sensitive areas do have large influence on the verification-area prediction.
In this study, the ilnpacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutions, 30 km, 60 km, and 120 kin, were studied for three tropical cyclones, TC Mindulle (2004), TC Meari (2004), and TC Matsa (2005). Results show that CNOP may present different structures with different resolutions, and the major parts of CNOP become increasingly localized with increased horizontal resolution. CNOP produces spiral and baroclinic structures, which partially account for its rapid amplification. The differences in CNOP structures result in different sensitive areas, but there are common areas for the CNOP-identified sensitive areas at various resolutions, and the size of the common areas is different from case to case. Generally, the forecasts benefit more from the reduction of the initial errors in the sensitive areas identified using higher resolutions than those using lower resolutions. However, the largest improvement of the forecast can be obtained at the resolution that is not the highest for some cases. In addition, the sensitive areas identified at lower resolutions are also helpful for improving the forecast with a finer resolution, but the sensitive areas identified at the same resolution as the forecast would be the most beneficial.
Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types: (1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following: (1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of E1 Nifio-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mecha- nisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.