A shadow detection method using pulse couple neural network inspired by the characters of human visual system is proposed.More precisely,lateral inhibition of human vision and coefficient of variation are combined together to improve the pulse couple neural network.Shadow detection is considered to be a shadow region segmentation problem.Experiment shows that the presented method is consistent with human vision compared to shadow detection methods based on HSV and pulse couple neural network(PCNN) by both subjective and objective assessments.
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.