Making use of the molecular closed-orbit theory and a new model potential for the Rydberg molecule, we have calculated the recurrence spectra of He^2+ molecular ion in a magnetic field for different quantum defects. The Fourier transform spectra of He^2+ molecular ion may be used to perform a direct comparison between peaks in the spectra and the scaled action values of closed orbits of the excited electron in external fields. We find that the spectral modulations can be analysed in terms of the scattering of the excited electron on the molecular core. Unlike the case of the Rydberg atom where the elastic scattering is predominant, modulations produced by inelastic scattering are also vital to the photoabsorption spectrum of the Rydberg molecule. Our results are in good agreement with the quantum results, which suggests that our method is correct.
This paper calculates the potential energy curves (PECs) of the ground state (X^1∑^+) and excited state (A^1∑^+) of SeN molecule by multireference configuration interaction method. The correct character of the PECs has been gripped while they had been improperly reported in the literature. Based on the PECs, the spectroscopic parameters and vibrational energy levels are determined, and compared with experimental data and other theoretical works available at the present.
The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs, the vibrational levels of the four states are determined by solving the Schrodinger equation of nuclear motion, and corresponding spectroscopic constants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the ^3∏ state, of which the dissociation asymptote is Cd(^1S) + Se(^3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm^-1 above the ground state and the ^3∑ state is the highest in the four calculated states.
Quasi-classical trajectory(QCT) calculations have been carried out to study the generalized polarization dependent differentialcross sections(PDDCSs) for the reactions H + LiH^+(v = 0,j = 0)→H_2 + Li^+ and H^+ + LiH(v = 0,j = 0)→H_2^+ + Li occurring onthe two lowest-lying electronic states of the LiH_2^+ system,using the ab initio potential energy surfaces(PESs) of Martinazzo et al.[3].Four PDDCSs,i.e.,(2π/σ)(dσ_(00)/dω_t),(2π/σ)(dσ_(20)/dω_t),(2π/σ)(dσ_(22+)/dω_t),(2π/σ)(dσ_(21-)/dω_t) have been discussed ...
Xiao Hu LiMei Shan WangChuan Lu YangLing Zhi MaNing MaJi Cheng Wu