This paper presents a 12-channel,30Gb/s front-end amplifier realized in standard 0.18μm CMOS technology for parallel optlc-fiber receivers. In order to overcome the problem of inadequate bandwidth caused by the large parasitical capacitor of CMOS photo-detectors,a regulated-cascode structure and noise optimization are used in the design of the transimpedance amplifier. The experimental results indicate that, with a parasitical capacitance of 2pF,a single channel is able to work at bite rates of up to 2.5Gb/s,and a clear eye diagram is obtained with a 0. 8mVpp input. Furthermore, an isolation structure combined with a p^+ guard.ring (PGR), an n^+ guard-ring (NGR),and a deep-n-well (DNW) for parallel amplifier is also presented. Taking this combined structure, the crosstalk and the substrate noise coupling have been effectively reduced. Compared with the isolation of PGR or PGR + NGR,the measured results show that the isolation degree of this structure is improved by 29.2 and 8. ldB at 1GHz,and by 8. 1 and 2. 5dB at 2GHz,respectively. With a 1.8V supply,each channel of the front-end amplifier consumes a DC power of 85mW,and the total power consumption of 12 channels is about 1W.
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.
A 30Gbit/s receptor module is developed with a CMOS integrated receiver chip(IC) and a GaAs-based 1 × 12 photo detector array of PIN-type. Parallel technology is adopted in this module to realize a high-speed receiver module with medium speed devices. A high-speed printed circuit board(PCB) is designed and produced. The IC chip and the PD array are packaged on the PCB by chip-on-board technology. Flip chip alignment is used for the PD array accurately assembled on the module so that a plug-type optical port is built. Test results show that the module can receive parallel signals at 30Gbit/s. The sensitivity of the module is - 13.6dBm for 10^-13 BER.
A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.
A monolithic photoreceiver which consists of a double photodiode (DPD) detector and a regulated cascade (RGC) transimpedance amplifier (TIA) is designed.The small signal circuit model of DPD is given and the bandwidth design method of a monolithic photoreceiver is presented.An important factor which limits the bandwidth of DPD detector and the photoreceiver is presented and analyzed in detail.A monolithic photoreceiver with 1.71GHz bandwidth and 49dB transimpedance gain is designed and simulated by applying a low-cost 0.6μm CMOS process and the test result is given.