This paper discusses efficient estimation for the additive hazards regression model when only bivariate current status data are available. Current status data occur in many fields including demographical studies and tumorigenicity experiments (Keiding, 1991; Sun, 2006) and several approaches have been proposed for the additive hazards model with univariate current status data (Linet M., 1998; Martinussen and Scheike, 2002). For bivariate data, in addition to facing the same problems as those with univariate data, one needs to deal with the association or correlation between two related failure time variables of interest. For this, we employ the copula model and an efficient estimation procedure is developed for inference. Simulation studies are performed to evaluate the proposed estimates and suggest that the approach works well in practical situations. An illustrative example is provided.
TONG XingWei 1,,HU Tao 2 & SUN JianGuo 3,4 1 School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China
In social network analysis, link prediction is a problem of fundamental importance. How to conduct a comprehensive and principled link prediction, by taking various network structure information into consideration,is of great interest. To this end, we propose here a dynamic logistic regression method. Specifically, we assume that one has observed a time series of network structure. Then the proposed model dynamically predicts future links by studying the network structure in the past. To estimate the model, we find that the standard maximum likelihood estimation(MLE) is computationally forbidden. To solve the problem, we introduce a novel conditional maximum likelihood estimation(CMLE) method, which is computationally feasible for large-scale networks. We demonstrate the performance of the proposed method by extensive numerical studies.
This paper discusses the correlation structure between London Interbank Offered Rates (LIBOR) by using the copula function. We start from one simplified model of A. Brace, D. Gatarek, and M. Musiela (1997) and find out that the copula function between two LIBOR rates can be expressed as a sum of an infinite series, where the main term is a distribution function with Gaussian copula. Partial differential equation method is used for deriving the copula expansion. Numerical results show that the copula of the LIBOR rates and Gaussian copula are very close in the central region and differ in the tail, and the Gaussian copula approximation to the copula function between the LIBOR rates provides satisfying results in the normal situation.